Product Description

High quality magnetically coupled for motor
Don’t hesitate to add your favorite list!

Contact Us

Please send us following information.
1. Motor output power(KW)
2. Motor speed(RPM)
3. Torque of the mangetic coupling
4. Working pressure of the housing(isolation sleeve)
5. Working temperature of magnetic coupling
6. Technical drawing of the output part connector (usually motor)
7. Technical drawing of the input part connector (usually pump)
 
 
Why choose us
1: Various styles for each products and completely series pneumatic products.
2: Large stock for fast shipping.
3: High quality with competitive price.
4: Small quantity order is acceptable.
5: Customize according to your special request.
6: Provide free products information.
7: Reliable quality assured and active after-sell service
Product Description:

Size: For more size please contact with us!

Application:

Product Picture:


What is Magnetic Coupling?

A magnetic coupler transmits a force without any actual physical contact. Since magnetic forces attract and repel, and this force performs work, the action can be linear or rotary. A simple magnetic coupler has a follower and a driver. The driver is connected to a motor, while the follower reacts to the driver’s motion, and this result in the transmission of mechanical energy without contact.

To understand a magnetic coupler, it is helpful to understand magnets. A magnet produces a magnetic field or force. This force acts on ferromagnetic materials and pulls them together or pushes them apart. Ferromagnetic materials include iron, cobalt, nickel, and certain alloys. The overall strength of a magnet is measured by what is termed its magnetic moment, or by the magnetic flux that is produced.

Permanent magnets are made from materials that have their own constant magnetic field. Similarly, electromagnets are created by coils of wire that become magnetic when current runs through the wire. Both of these only have a magnetic force when electricity is applied. The strength of these magnets can be increased by wrapping the coil of wire around a ferromagnetic material. When a change in current in 1 conductor induces a voltage in the second conductor, both are magnetically coupled.

Operation Process Attention

    
Safe handling and storage magnet:
Be careful all the time, because the magnets will stick together and they can hurt your fingers. The magnet may also be damaged by the collision of the magnet itself (touch the edge or hit the crack).
Keep magnets away from objects, such as floppy disks, credit cards, computer monitors, watches, mobile phones, medical devices, etc..
1, magnets should be away from the pacemaker.
2, the larger size of the magnet, each piece should be added between the plastic or hard paper gasket to ensure that the magnet can be easily separated.
3, magnets should be stored in a dry, constant temperature environment.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

magnetic coupling

Can Magnetic Couplings Be Used in Applications Involving Corrosive or Aggressive Fluids?

Yes, magnetic couplings can be used in applications involving corrosive or aggressive fluids, provided that the coupling is constructed using materials that are compatible with the specific fluid being handled. The ability to use magnetic couplings with corrosive or aggressive fluids depends on the material selection and design of the coupling.

When handling corrosive or aggressive fluids, it’s essential to consider the following factors:

  1. Material Compatibility:

    Select materials for the magnetic coupling that are resistant to the corrosive properties of the fluid. For example, stainless steel, Hastelloy, or certain grades of ceramics are commonly used for components that come into contact with corrosive fluids.

  2. Hermetic Sealing:

    Ensure that the magnetic coupling provides a hermetic seal to prevent fluid leakage. The containment shell and other sealing components must be able to withstand the chemical properties of the aggressive fluid.

  3. Coatings and Lining:

    In some cases, coatings or lining materials can be applied to the coupling’s surfaces that are exposed to the fluid. These coatings can offer additional protection against corrosion and ensure compatibility with aggressive fluids.

  4. Fluid Temperature and Pressure:

    Consider the temperature and pressure of the aggressive fluid, as it may influence the material selection and design of the magnetic coupling. High temperatures or pressures can impact the coupling’s performance and material integrity.

  5. Fluid Properties:

    Understand the specific chemical properties of the aggressive fluid, such as acidity, alkalinity, or reactivity. This information is crucial for selecting appropriate materials and ensuring the coupling can handle the fluid’s properties.

  6. Manufacturer’s Recommendations:

    Consult the magnetic coupling manufacturer for their recommendations on material selection and design considerations for applications involving corrosive or aggressive fluids. They can provide guidance based on their expertise and product specifications.

By carefully considering material compatibility and design factors, magnetic couplings can be successfully used in a wide range of applications involving corrosive or aggressive fluids. These couplings offer advantages such as leak-free operation, reduced maintenance, and the absence of wear-prone components, making them suitable for various industries, including chemical processing, petrochemicals, and pharmaceuticals.

magnetic coupling

Where Can I Find Reputable Suppliers or Manufacturers of Magnetic Couplings for Specific Engineering Needs?

When searching for reputable suppliers or manufacturers of magnetic couplings, it is essential to consider several factors to meet your specific engineering needs. Here are some valuable resources and steps to help you find reliable suppliers:

  1. Online Directories:

    Online directories, such as ThomasNet, Alibaba, and GlobalSpec, are valuable platforms to search for manufacturers and suppliers of magnetic couplings. These directories provide detailed information about companies, their products, and their capabilities, making it easier to identify potential suppliers.

  2. Trade Shows and Conferences:

    Attending trade shows and engineering conferences related to your industry can be an excellent way to meet and connect with magnetic coupling manufacturers in person. These events provide an opportunity to see product demonstrations, discuss your specific needs, and establish direct contacts with suppliers.

  3. Industry Associations:

    Industry associations and organizations often have a network of members, including suppliers and manufacturers of various engineering components. They may provide valuable recommendations and insights on reputable suppliers of magnetic couplings within your industry.

  4. Referrals and Recommendations:

    Seeking referrals from colleagues or industry professionals who have experience with magnetic couplings can be valuable. Recommendations from trusted sources can save time and help you find reliable suppliers.

  5. Online Research:

    Performing online research and reading customer reviews and testimonials can give you insights into the reputation and reliability of different magnetic coupling suppliers. Look for manufacturers with positive feedback and a track record of delivering quality products.

  6. Supplier Websites:

    Visit the websites of potential magnetic coupling suppliers to learn more about their products, services, and manufacturing capabilities. Look for suppliers with a comprehensive product range, engineering expertise, and a commitment to meeting specific customer requirements.

  7. Customization Options:

    Consider suppliers who offer customization options to meet your specific engineering needs. Magnetic couplings may need to be tailored for particular torque, speed, or environmental requirements, so selecting a manufacturer with the ability to create bespoke solutions is essential.

It is crucial to establish clear communication with potential suppliers, sharing your engineering specifications and expectations. Requesting samples or prototypes, if possible, can also help evaluate the suitability of the magnetic couplings for your specific applications. Ultimately, choosing a reputable and experienced supplier will ensure that you receive high-quality magnetic couplings that meet your engineering needs and contribute to the success of your projects.

magnetic coupling

Different Types of Magnetic Couplings Used in Various Applications

Magnetic couplings come in different configurations to suit various applications and specific requirements. Some of the common types of magnetic couplings include:

  • Standard Magnetic Couplings:

    These are the most basic and widely used magnetic couplings. They consist of two rotors with permanent magnets and a containment shell. Standard magnetic couplings are suitable for a wide range of applications, providing non-contact power transmission, misalignment compensation, and isolation between shafts.

  • High Torque Magnetic Couplings:

    High torque magnetic couplings are designed to transmit higher levels of torque between the input and output shafts. They feature stronger and larger magnets to handle increased power transmission requirements. These couplings are commonly used in heavy-duty industrial applications, such as mixers, agitators, and large pumps.

  • Low Torque Magnetic Couplings:

    Conversely, low torque magnetic couplings are suitable for applications with lower torque demands. They have smaller and less powerful magnets, making them ideal for applications where precision and efficiency are essential, such as medical devices and laboratory equipment.

  • Variable Torque Magnetic Couplings:

    Variable torque magnetic couplings provide the ability to adjust the torque transmission level. These couplings can be designed with adjustable magnets or magnetic fields, allowing users to control the torque according to the specific needs of the application. They are used in systems where variable speed and torque are required, such as variable speed pumps and compressors.

  • High-Speed Magnetic Couplings:

    High-speed magnetic couplings are designed to handle rapid rotations without compromising on efficiency and reliability. They feature special designs and materials to reduce eddy currents and losses associated with high-speed operation. These couplings are commonly used in centrifugal pumps, turbo machinery, and high-speed motors.

  • Compact Magnetic Couplings:

    Compact magnetic couplings are designed to have a smaller footprint, making them suitable for applications with limited space. They are commonly used in compact pumps, microfluidic systems, and portable devices where space efficiency is crucial.

  • Bi-Directional Magnetic Couplings:

    Bi-directional magnetic couplings allow power transmission in both directions between the input and output shafts. They are used in applications where bidirectional rotation or periodic reversing of motion is required, such as in mixing applications and reversible pumps.

  • Custom Magnetic Couplings:

    Manufacturers can also create custom magnetic couplings tailored to specific applications. Custom couplings are designed to meet unique requirements, such as special torque levels, specific environmental conditions, or integration with proprietary systems.

The choice of the magnetic coupling type depends on factors such as torque requirements, speed, space constraints, environmental conditions, and the level of customization needed for the specific application.

China best High Quality Magnetic Coupling for Motor  China best High Quality Magnetic Coupling for Motor
editor by CX 2024-02-22