Product Description

Quick Details

Material: Copper Technics: Forged Type: Coupling
Place of Origin: QIngdao, China (Mainland) Model Number: AT    07 Brand Name: AT
Connection: Welding Shape: Equal Head Code: Round
Certificates: CE   ISO Usage: Plumbing & CHINAMFG System

Packaging & Delivery

Packaging Details: Export netural packing (PCV bag,inner white box,master carton, Pallet.) or Cutomized packing as request.
Delivery Detail: 30-45 days after receiving deposit

Packing:

Factory:

Specifications
1.Quality Priority 
2. OEM service 
3. reasonable price 
4. oversea service support 
5. 321 stainless steel
ABOUT US:

As your one-stop source, AT PRECAST,we design, manufacturer and distribute precast concrete accessories including the Lifting Systems and Anchoring systems Coil and Ferrule Inserts. for Concrete and Prefabricated area.

As a leader in developing concrete accessory products, our main goal is to produce products that are safer, faster and more cost efficient.

With more than totally 50 years working experience, our entire staff is dedicated to provide you with the best customer service and competitive prices. Our sales force are able to answer your questions quickly and offer you technical support .

Assurance:

 100% quality manufacturing.
 We guarantee that our products meet your supplied specifications
 Extremely competitive pricing
 Delivery to your port or front door
 4 —- 8 week lead times
 We handle all paperwork
 Partial container orders
 Flexible payment options
 Unique tooling options
 Full range of packaging options from bulk to retail ready
 Complete testing services available
 
FAQs:

1. Where is your location?

We are located in HangZhou City of China and are closed to Airport. It takes 30minuts by car from Liuting Airport our company.

2. How long has the company been established?

AT INDUSTRY was established in 2009. There is 6 years exporting experiences.

3. How many employees do you have?

Administration / sales    4
Engineering / design as our partner     8
Production as our partners 120
Quality assurance / inspection   10

4. Which countries do you export to?

U.S.A, Germany, France, Italy, UK, Brazil, Middle east of Asia, Thailand,

5. What proportion of your goods are exported?

100% of our production are exported to all over the world.

6. How long does it take to receive samples?

a) Pattern:30-45days after order 
b) Sample:30days after pattern finishing.
c) The lead time is the general production period and does not include the transportation time.

7. New product development process

Got tooling order and sample order with 50% deposit—Hold a meeting with the relation dept. to ensure the developing schedule—Design pattern, fixture and gauge and making them in our house—mold steel buying—Machining—Inspection—Send out the sample with initial inspection report.

8. How long is the manufacturing lead time?

Mass Production: 90days after sample approval by yours.
The lead time is the general production period including the transportation time.
We could make some special production arrangement effectively if customer has urgent need.

9. What basis can we buy goods?

We generally offer customers prices FOB& CIF (Carriage, Insurance & Freight). The CIF includes the freight cost to your nominated sea port.
We do provide clearance of goods which needs to be handled by a local freight forwarder.
All local costs and taxes are the responsibility of the buyer. We are happy to offer advisement on shipping if required.

10. What are the payment terms?

Payment terms are negotiable and will improve for long term customers.
During the initial stages, we request 50% of tooling fee in advance with the balance payable on acceptance of samples.
Production orders can be negotiable. We prefer 50% deposit and the balance by T/T before sails. But sometimes T/T 30 days after sails would also acceptable.

11. Which currency can we buy in?

We can deal in USD / Euro currency / GBP.

12. How long does it take to ship goods from China by sea?

It takes about 5 weeks to European ports plus 1 week customs clearance, so you can get the container within 6 to 7 weeks. It takes about 2 weeks to east coast and 3 weeks to west coast US ports. All sea goods are shipped from HangZhou Port.

13. How long does it take to ship goods from China by air?

It takes about 7 days to all major destinations.

14. Can we visit the factory to conduct an audit?

Yes, you are welcome to visit our partner factory by prior agreement.

15. How do we retain client confidentiality?

We are happy to CHINAMFG Confidentiality Agreements with customers and will honor them.

16. Which languages do we do business in?

Although we do business with many countries around the world, we can only communicate effectively in Chinese English.
All information supplied should therefore be supplied in this form.

17. Is there a minimum volume of business required to conduct international purchasing?

There are no minimum volumes, but the prices of the goods, plus the fixed costs of importing makes it more economical to buy in high volumes. All potential customers will be assessed on an individual basis to determine if it appears a viable option for all parties to develop a relationship.

18. What type of parts you are specialized in?

Our business contains 2 areas,
one is for construction precast including lifting system, rigging hardware metal parts.
 
Another is customized metal business of quality sand castings, investment castings, lost foam castings, hot forgings, cold forgings, stampings, machined parts, injectionmolded plastics parts, etc.

19. Which kind of equipments do you have?

Forging friction press 160Ton, 300Ton, 630Ton, 1200Ton
Casting CHINAMFG of 200kg, 500kg,1000kgs, 2000kgs
Press of 63ton, 120tons
CNC Machining center
CNC Vertical Lathe
CNC Lathe center
Boring machine
Drilling machine

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

magnetic coupling

How Magnetic Couplings Maintain Efficiency and Reduce Power Loss During Operation

Magnetic couplings offer several features that contribute to their efficiency and help reduce power loss during operation. These characteristics ensure that the majority of the input power is effectively transferred to the driven shaft, leading to enhanced overall system performance. Here’s how magnetic couplings achieve this:

  • Non-Contact Power Transmission:

    Unlike mechanical couplings that rely on physical contact between components, magnetic couplings operate on the principle of magnetism. There is no friction or mechanical wear, which means there are no energy losses due to rubbing surfaces. The non-contact nature of magnetic couplings significantly reduces power loss and improves efficiency.

  • Elimination of Bearings:

    In traditional couplings, bearings are often used to support the shafts and minimize friction during rotation. Bearings can contribute to power loss as a portion of the input power is used to overcome bearing friction. In contrast, magnetic couplings do not require bearings for power transmission, further reducing power losses associated with bearing friction.

  • Reduced Heat Generation:

    Magnetic couplings generate minimal heat during operation. In mechanical couplings, friction between rotating components can lead to heat generation and energy loss. The absence of mechanical contact in magnetic couplings means that the heat generation is significantly lower, preserving energy efficiency.

  • Optimized Magnetic Design:

    Magnetic couplings are engineered with optimized magnetic designs to minimize eddy current losses. Eddy currents can be induced in conducting materials, such as the containment shell or rotor, leading to power dissipation. Manufacturers carefully design the coupling’s magnetic configuration to reduce eddy current losses and improve overall efficiency.

  • Customization for Specific Applications:

    Magnetic couplings can be customized for specific applications, allowing for efficient power transmission in diverse operating conditions. Engineers can tailor the coupling’s design, materials, and magnet configurations to match the torque and speed requirements of the application, ensuring maximum efficiency.

  • Alignment Flexibility:

    Magnetic couplings offer some misalignment tolerance between the driving and driven shafts. This flexibility allows for better alignment under dynamic conditions, minimizing the chances of energy losses due to misalignment-related stresses.

By combining these efficiency-enhancing features, magnetic couplings can maintain high levels of energy transfer from the driving to the driven shaft, resulting in reduced power loss and improved overall system efficiency. These advantages make magnetic couplings suitable for various applications, including pumps, agitators, and other systems where energy efficiency is critical.

magnetic coupling

How do Magnetic Couplings Contribute to the Overall System Reliability and Prevent Mechanical Wear?

Magnetic couplings offer several advantages that contribute to the overall system reliability and prevent mechanical wear. These benefits are a result of their non-contact power transmission principle and unique design features. Here’s how magnetic couplings achieve this:

  1. No Physical Contact:

    Magnetic couplings operate without any physical contact between the driving and driven components. Unlike traditional mechanical couplings that rely on friction and wear-prone components, magnetic couplings use magnetic fields to transfer torque and power. This absence of physical contact eliminates mechanical wear and reduces the need for regular maintenance and replacement of wearing parts.

  2. Hermetic Sealing:

    Magnetic couplings often feature a hermetic sealing design that prevents fluid leakage. The driving and driven components are separated by a sealed containment shell, which ensures that there is no direct exposure to the environment or the fluid being handled. This hermetic sealing not only prevents leakage but also protects sensitive components from contamination and external influences, enhancing the overall system reliability.

  3. Reduced Friction Losses:

    Since there is no physical contact between the coupling’s components, magnetic couplings experience minimal friction losses during operation. The reduction in frictional forces translates to higher efficiency and lower energy consumption compared to traditional couplings with sliding or rolling elements.

  4. Tolerance to Misalignment:

    Magnetic couplings can accommodate a certain degree of misalignment between the driving and driven components. This misalignment tolerance helps to minimize stress on the coupling and connected equipment, reducing the risk of premature wear or failure in situations where perfect alignment may not be achievable or maintained over time.

  5. Overload Protection:

    Some magnetic couplings are designed with built-in overload protection features. In case of excessive torque or sudden overloads, these couplings can disengage or slip, preventing damage to the coupling and the connected machinery. This overload protection contributes to the long-term reliability of the system by avoiding potential catastrophic failures.

  6. No Lubrication Required:

    Unlike many traditional mechanical couplings that need regular lubrication to reduce friction and wear, magnetic couplings do not require lubrication. The absence of lubricants simplifies maintenance and eliminates the risk of lubricant contamination in sensitive applications.

Overall, magnetic couplings offer a reliable and efficient solution for various applications, especially in industries where the prevention of mechanical wear, fluid leakage, and frequent maintenance are essential considerations. Their non-contact design, hermetic sealing, and tolerance to misalignment make them an attractive choice for critical systems that demand high reliability and performance.

magnetic coupling

Key Design Considerations When Using Magnetic Couplings in Pumps and Agitators

When incorporating magnetic couplings in pumps and agitators, several critical design considerations need to be taken into account to ensure effective and reliable operation. These considerations include:

  1. Fluid Characteristics:

    Understand the properties of the fluid being handled, including viscosity, temperature, and corrosiveness. High-viscosity fluids may require larger magnets to generate sufficient torque, while corrosive fluids may necessitate materials with excellent chemical resistance.

  2. Torque Requirements:

    Determine the required torque for the specific pump or agitator application. Magnetic couplings must be designed to transmit the necessary torque to handle the fluid flow or agitation load effectively.

  3. Alignment and Space Constraints:

    Consider the available space and potential misalignment between the driving and driven shafts. Magnetic couplings can accommodate some misalignment, but proper alignment is essential to ensure efficient power transmission and avoid unnecessary stresses on the system.

  4. Speed and Efficiency:

    Evaluate the speed requirements of the pump or agitator. Magnetic couplings are capable of high-speed operation, but it’s crucial to optimize the design to minimize eddy current losses and ensure maximum efficiency.

  5. Containment and Hermetic Sealing:

    Ensure that the magnetic coupling provides adequate containment and hermetic sealing to prevent fluid leakage or contamination. This is especially critical when handling hazardous or sensitive fluids.

  6. Materials and Coatings:

    Select appropriate materials for the magnetic coupling components based on the fluid characteristics. Stainless steel, ceramics, or specialized coatings can enhance the coupling’s durability and resistance to corrosion.

  7. Overload Protection:

    Consider incorporating overload protection features in the magnetic coupling design. This can include slip mechanisms or torque limiters to prevent damage to the driving motor and connected equipment in case of sudden overloads or blockages.

  8. Environmental Conditions:

    Take into account the environmental conditions in which the pump or agitator will operate. Extreme temperatures, humidity, or exposure to aggressive chemicals can influence the choice of materials and coatings for the magnetic coupling.

  9. Integration with System Components:

    Ensure that the magnetic coupling design integrates seamlessly with other system components. Proper coupling sizing, mounting, and alignment procedures are essential for trouble-free installation and operation.

  10. Manufacturer Expertise:

    Collaborate with manufacturers experienced in designing magnetic couplings for pumps and agitators. Work with experts who can provide customized solutions tailored to your specific application needs.

By carefully considering these design factors, you can maximize the benefits of using magnetic couplings in pumps and agitators, such as improved reliability, reduced maintenance, and enhanced system performance.

China Professional Made in China Shaft Magnetic Coupling with High Quality  China Professional Made in China Shaft Magnetic Coupling with High Quality
editor by CX 2024-02-20