Product Description

Hot sale: low noise , no leakage, no additional cost for coupling shafts magnetic pump coupling permanent magnetic coupling

Please send us the following information.

1. Motor output power(KW)
2. Motor speed(RPM)
3. The torque of the magnetic coupling
4. Working pressure of the housing(isolation sleeve)
5. Working temperature of magnetic coupling
6. Technical drawing of the output part connector (usually motor)
7. Technical drawing of the input part connector (usually pump)

Introduction of coupling shafts magnetic pump coupling permanent magnetic coupling
The magnetic shaft coupling is a new kind of coupling, which connects motor and machine by permanent magnetic force. 
They consist of an external rotor, internal rotor and isolating covers.
They work in the sealed magnetic drive pumps, which transporting volatile, flammable, explosive and toxic solutions with no leakage. 
These magnetic shaft couplings can be used to connect gear pumps, screw pumps, centrifugal pumps, etc. with all types of the electric motor or gear box. 
Magnetic shaft coupling is widely used in various industries and fields, such as chemical, papermaking, foodstuff, pharmacy, and so on. 

How Does A Magnetic Coupling Work
A magnetic coupling consists of 2 magnetic assemblies and isolation cover. One is the external assembly (the driver magnet) and the other is the internal assembly (the driven magnet). The external assembly is connected to a motor and the internal assembly is directly attached to the pump input drive shaft. Since the internal magnet is isolated within the pump case, seals and therefore leaks are eliminated.
The coupling deflects angularly and the magnets create a force of simultaneous attraction and repulsion while the magnetic coupler assembly is working. This force is used to transfer torque from the motor to the pump drive shaft. This permanent magnet coupling creates neither slippage nor induction current during rotation.
The seals for metering pumps, feed pumps, and chemical day tank agitators can all be replaced with a permanent magnet coupling to eliminate seal leakage and downtime associated with seal replacement. The internal submerged magnet is of “sealed” construction.

Advantages of coupling shafts magnetic pump coupling permanent magnetic coupling
» Elimination of fluid leakage from the pump shaft.
» Vibrations are not transmitted to the pump.
» No maintenance required for magnetic couplings.
» Using magnetic couplings allows the use of standard pumps without expensive mechanical seals.
» No additional cost for purchasing mechanical seal spare parts and maintenance.

Specification of coupling shafts magnetic pump coupling permanent magnetic coupling

Item Internal Rotor(mm) External Rotor(mm) Isolating Covering(mm)
A B C D E F G Shaft Pin H I J L N M P Q R S T U
GME03-3LM00 Φ35 Φ10 26 18 M6X12 Φ42 Φ60 Φ50 46 6-M4 Φ40 Φ50 4-Φ5.4 Φ38 Φ60 6 6
GME03-5MM00 Φ42 Φ12 27 4 18 13.8 M6X16 Φ49 Φ72 Φ60 46 4-Φ6.7 Φ52 Φ60 4-Φ6.7 Φ44 Φ74 8 8
GME03-16LM00 Φ56 Φ12 45 4 25 13.8 M6X16 Φ63 Φ89 Φ80 75 6-M5 Φ70 Φ75 4-Φ6.7 Φ58 Φ89 8 8
GME03-16LM01 Φ56 Φ12 45 4 25 13.8 M6X16 Φ63 Φ89 Φ80 75 4-M5 Φ70 Φ75 4-Φ6.7 Φ58 Φ89 6 10
GME03-16MM00 Φ56 Φ12 45 4 25 13.8 M6X16 Φ63 Φ89 Φ80 75 6-M5 Φ70 Φ75 4-Φ6.7 Φ58 Φ89 8 8
GME03-22LM00 Φ88 Φ20 29 6 25 22.8 M8X20 Φ97 Φ122 Φ110 70 8-M6 Φ98 Φ108 6-Φ6.7 Φ91 Φ122 8 8
GME03-30LM00 Φ88 Φ20 48 6 30 22.8 M8X20 Φ97 Φ122 Φ110 81 8-M6 Φ98 Φ108 6-Φ6.7 Φ91 Φ122 8 8
GME03-40LM00 Φ101 Φ25 49 8 28 28.3 M10X20 Φ109 Φ140 Φ124 83 8-M8 Φ110 Φ126 8-Φ6.7 Φ103 Φ140 12 6
GME03-50LM00 Φ107 Φ20 70 6 30 22.8 M6X16 Φ113.4 Φ145 Φ135 80 4-M6 Φ126 Φ133 12-Φ8.7 Φ109 Φ153 12 15
GME03-65LM00 Φ101 Φ25 77 8 45 28.3 M10X20 Φ109 Φ140 Φ124 111 8-M8 Φ110 Φ126 8-Φ6.7 Φ103 Φ140 12 6
GME03-80LM00 Φ106 Φ32 65 10 21 36.5 M6X25 Φ115 Φ145 Φ135 82 4-M6 Φ127 Φ135 6-Φ8.7 Φ110 Φ153 13 18
GME03-80LM00 Φ141 Φ92 Φ40 65 12 45 43.3 M12X25 Φ152 Φ180 Φ168 100 8-M8 Φ154 Φ164 8-Φ6.7 Φ145 Φ180 12 8
GME03-100LM00 Φ131 Φ82 Φ32 80 10 24.5 35.3 M8X35 Φ139 Φ170 Φ160 100 4-M6 Φ152 Φ158 8-Φ8.7 Φ133 Φ178 14 21
GME03-110LH00 Φ141 Φ92 Φ40 85 10 50 43.3 M12X25 Φ152 Φ184 Φ168 115 12-M8 Φ156 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-110LM00 Φ141 Φ92 Φ35 80 10 55 38.3 M12X25 Φ152 Φ180 Φ168 115 12-M8 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-140LM00 Φ141 Φ92 Φ40 110 12 80 43.3 M12X25 Φ152 Φ190 Φ170 145 12-M10 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-180LM00 Φ141 Φ92 Φ40 140 12 95 43.3 M12X25 Φ152 Φ190 Φ170 175 12-M10 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-220LM00 Φ141 Φ92 Φ48 160 14 110 51.8 M12X25 Φ152 Φ190 Φ170 195 12-M10 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-300LM00 Φ162 Φ65 100 18 60 69.4   Φ170 Φ198 Φ188 123 12-M6 Φ180 Φ192 12-Φ11 Φ163.5 Φ218 16 10
GME03-400LH00 Φ195 Φ70 127 20 107 79.9 M12X25 Φ203 Φ234 Φ222 152 6-M6 Φ212 Φ164 12-Φ11 Φ198 Φ278 16 22

Application of coupling shafts magnetic pump coupling permanent magnetic coupling
The ability to hermetically separate 2 areas whilst continuing to transmit mechanical power from one to the other makes these couplings ideal for applications where prevention of cross-contamination is essential. For instance: hydraulic sectors, dosing systems, compressors, sterilizers, industrial ovens, biotechnology, subsea equipment, pharmaceutical industry, chemical industry, food industry, generators, and mixers.
 
Operation principles of coupling shafts magnetic pump coupling permanent magnetic coupling

The magnetic coupling works by using the power generated by permanent magnets. No external power supply is needed. These are permanent magnets, not electro magnets.
 
Packing Method of coupling shafts magnetic pump coupling permanent magnetic coupling
Double strength Corrugated Carton and Wood case Sea Packing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

magnetic coupling

Can Magnetic Couplings Be Used in Applications Involving Corrosive or Aggressive Fluids?

Yes, magnetic couplings can be used in applications involving corrosive or aggressive fluids, provided that the coupling is constructed using materials that are compatible with the specific fluid being handled. The ability to use magnetic couplings with corrosive or aggressive fluids depends on the material selection and design of the coupling.

When handling corrosive or aggressive fluids, it’s essential to consider the following factors:

  1. Material Compatibility:

    Select materials for the magnetic coupling that are resistant to the corrosive properties of the fluid. For example, stainless steel, Hastelloy, or certain grades of ceramics are commonly used for components that come into contact with corrosive fluids.

  2. Hermetic Sealing:

    Ensure that the magnetic coupling provides a hermetic seal to prevent fluid leakage. The containment shell and other sealing components must be able to withstand the chemical properties of the aggressive fluid.

  3. Coatings and Lining:

    In some cases, coatings or lining materials can be applied to the coupling’s surfaces that are exposed to the fluid. These coatings can offer additional protection against corrosion and ensure compatibility with aggressive fluids.

  4. Fluid Temperature and Pressure:

    Consider the temperature and pressure of the aggressive fluid, as it may influence the material selection and design of the magnetic coupling. High temperatures or pressures can impact the coupling’s performance and material integrity.

  5. Fluid Properties:

    Understand the specific chemical properties of the aggressive fluid, such as acidity, alkalinity, or reactivity. This information is crucial for selecting appropriate materials and ensuring the coupling can handle the fluid’s properties.

  6. Manufacturer’s Recommendations:

    Consult the magnetic coupling manufacturer for their recommendations on material selection and design considerations for applications involving corrosive or aggressive fluids. They can provide guidance based on their expertise and product specifications.

By carefully considering material compatibility and design factors, magnetic couplings can be successfully used in a wide range of applications involving corrosive or aggressive fluids. These couplings offer advantages such as leak-free operation, reduced maintenance, and the absence of wear-prone components, making them suitable for various industries, including chemical processing, petrochemicals, and pharmaceuticals.

magnetic coupling

What are Some Real-World Examples of Successful Magnetic Coupling Implementations in Different Industries?

Magnetic couplings have found successful implementations in various industries, offering reliable and efficient solutions for a wide range of applications. Here are some real-world examples of their successful use:

  1. Chemical and Petrochemical Industry:

    In chemical and petrochemical processes, magnetic couplings are employed in pumps and agitators to prevent fluid leakage and ensure a hermetically sealed system. This eliminates the risk of hazardous chemicals escaping into the environment and protects the integrity of the process.

  2. Pharmaceutical Industry:

    In pharmaceutical manufacturing, magnetic couplings are used in mixers and reactors. The hermetically sealed design prevents contamination and allows for sterile operation, ensuring the highest level of product purity and quality.

  3. Food and Beverage Industry:

    Magnetic couplings are used in pumps and mixers for food and beverage processing. The hermetic sealing feature ensures that there is no product contamination, meeting stringent food safety standards and maintaining the integrity of the processed food and beverages.

  4. Automotive Industry:

    In automotive applications, magnetic couplings find use in cooling systems and turbochargers. Their high efficiency and reliability improve engine performance, and their non-contact design eliminates the need for lubrication, reducing maintenance requirements.

  5. Renewable Energy:

    In wind turbines, magnetic couplings are used to transmit power from the turbine rotor to the generator. The maintenance-free operation and reliable power transmission make magnetic couplings a valuable component in wind turbine systems.

  6. Aerospace Industry:

    Magnetic couplings are used in aerospace applications, such as aircraft fuel systems. Their leak-free design and tolerance to misalignment make them suitable for critical aerospace applications where safety and reliability are paramount.

  7. Marine Industry:

    In marine applications, magnetic couplings are utilized in pumps and propulsion systems. Their ability to handle high torque and maintain efficiency at various speeds makes them suitable for different marine vessels and offshore platforms.

  8. Mining and Minerals:

    Magnetic couplings are employed in mining equipment, such as slurry pumps. Their robust construction and tolerance to abrasive materials enhance the reliability and longevity of the mining equipment in harsh operating conditions.

These real-world examples demonstrate the versatility and effectiveness of magnetic couplings across multiple industries. Their ability to provide hermetic sealing, prevent fluid leakage, and offer reliable power transmission without mechanical wear makes them a valuable solution in critical systems where efficiency, safety, and reduced maintenance are essential considerations.

magnetic coupling

What is a Magnetic Coupling and How Does It Function in Mechanical Power Transmission?

A magnetic coupling is a type of coupling used in mechanical power transmission systems to transfer torque from one shaft to another without direct physical contact. It operates based on the principles of magnetism and is designed to transmit rotational power while allowing a degree of misalignment and isolation between the input and output shafts.

The basic components of a magnetic coupling typically include an outer and inner rotor, both containing permanent magnets. The outer rotor is connected to the input shaft, while the inner rotor is connected to the output shaft. These rotors are separated by a non-magnetic containment shell, creating a magnetic air gap between them.

When the input shaft rotates, the magnets on the outer rotor create a magnetic field that passes through the containment shell and induces a corresponding magnetic field in the inner rotor. The interaction between these magnetic fields causes the inner rotor to rotate synchronously with the outer rotor, effectively transferring torque from one shaft to the other.

The key features and functions of magnetic couplings in mechanical power transmission are as follows:

  • Non-Contact Power Transmission:

    Unlike traditional mechanical couplings that require physical contact between components, a magnetic coupling achieves torque transmission through magnetic fields, enabling a non-contact power transfer.

  • Misalignment Compensation:

    The magnetic coupling can accommodate a certain amount of misalignment between the input and output shafts. This feature helps prevent excessive forces and wear on the system, improving its overall reliability.

  • Isolation and Containment:

    The containment shell between the rotors isolates the input and output shafts, making the magnetic coupling ideal for applications where fluid or gas containment is critical. It allows for hermetically sealed connections in pumps, mixers, and other equipment.

  • Overload Protection:

    In case of sudden overload or jamming in the driven system, the magnetic coupling can slip or disengage, protecting the driving motor and components from damage.

  • No Lubrication Requirements:

    Since there is no physical contact, magnetic couplings do not require lubrication, reducing maintenance needs and the risk of contamination in sensitive applications.

  • No Wear or Friction:

    The absence of mechanical contact eliminates wear and friction between the coupling’s components, leading to a longer service life and higher efficiency.

Magnetic couplings find applications in various industries, such as chemical processing, food and beverage, medical devices, and pumps, where leakage prevention, cleanliness, and reliability are essential.

China high quality Coupling Shafts Magnetic Pump Coupling Permanent Magnetic Coupling  China high quality Coupling Shafts Magnetic Pump Coupling Permanent Magnetic Coupling
editor by CX 2024-03-03