Product Description

Standard Male magnetic coupling Plastic Pipe Fitting with Good Service

Product Description

Technical data

Part Material
Body(A) (PPB)Ploypropylene(PP-B)of exceptional mechanical properties even at high temperature
Blocking bush(D) (PPB)Ploypropylene
Nut(B) (PPB)Ploypropylene with dye master of high stability to UV rays and solidity to heat
Clinching ring(C) (POM)Polyacetal resin(POM) of high mechanical resistance and hardness
O ring gasket(E) (NBR)Special elastomeric acrylonitrile rebber(NBR)for alimentary use

TYPE C SIZE Weight pcs/ carton
Product name Code (g/pc)
MALE THREADED COUPLING E1004  20*1/2 27  600
20*3/4 29  600
20*1 31  560
25*1/2 44  360
25*3/4 45  360
25*1 46  330
32*1/2 74  240
32*3/4 75  240
32*1 77  210
32*1 1/4 79  210
40*1 106  130
40*11/4 110  130
40*1 1/2 112  130
50*1 170  80
50*11/4 172  80
50*11/2 176  80
50*2 185  80
63*11/4 291  48
63*11/2 296  48
63*2 301  46
63*21/2 297  46
75*2″ 572  27
75*21/2″ 584  27
75*3″ 592  24
90*21/2″ 824  14
90*3″ 818  14
90*4″ 828  14
110*3″ 1319  8
110*4″ 1301  8

FEATURES
1) Light weight, easy to load and unload
2) Good chemicals and drugs resistance
3) Small resistance to fluidity
4) Strong mechanical strength
5) Good electrical insulation
6) Water quality unaffected
7) Simple installation

APPLICATION
1) Structure Engineering
2) Water supply system
3) for Agriculture Irrigation

Main Products

View more products,you can click products keywords…

PPR Pipe PPR Fitting
PP Union Ball Valve PP Compression Fitting
Clamp Saddle Solenoid Valve

Sprinkler

PVC Ball Valves

Company Profile

OTHER DETAIL SERVICES FOR YOU
1.Any inquiries will be replied within 24 hours.
2.Professional manufacturer.
3.OEM is available.
4.High quality, standard designs,reasonable&competitive price,fast lead time.
5.Faster delivery: Sample will be prepared in 2-3 days.
6.Shipping: We have strong cooperation with DHL,TNT,UPS,MSK,China Shipping,etc.

FAQ

1.What is your MOQ?
Our MOQ is usually 5 CTNS for size from 20-50mm.

2.What is your delievery time?
The time of delievery is around 30-45days.

3.What is your payment terms?
We accept 30% T/T in advance,70% before shipment .or 100% L/C.

4.What is the shipping port?
We ship the goods to HangZhou or ZheJiang port.

5.What is the address of your company?
Our company is located in the HangZhou, HangZhou ZHangZhoug Province,China.You are welcomed to visit our factory.

6.How about the samples?
we could send you the samples for free, and you need to pay the courier fee.
If there are too much samples, then you also need to undertake the sample fee.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

magnetic coupling

Can Magnetic Couplings Accommodate Misalignment Between the Driving and Driven Shafts?

Yes, magnetic couplings can accommodate a certain degree of misalignment between the driving and driven shafts. This is one of the significant advantages of using magnetic couplings over traditional mechanical couplings, which often require precise alignment to function properly.

The ability to accommodate misalignment in magnetic couplings is due to their non-contact power transmission principle. In a magnetic coupling, the driving and driven shafts are not physically connected but instead operate through a magnetic field.

When misalignment occurs between the driving and driven shafts, the magnetic fields in the magnetic coupling can adjust to compensate for the misalignment within certain limits. This means that the magnetic coupling can continue to transmit torque and power effectively, even if the shafts are not perfectly aligned.

However, it’s essential to note that while magnetic couplings offer misalignment tolerance, excessive misalignment can still lead to reduced efficiency and increased stress on the coupling components. Therefore, it is recommended to keep misalignment within the specified limits provided by the coupling manufacturer to ensure optimal performance and longevity.

By allowing for some misalignment, magnetic couplings offer greater flexibility during installation and operation. This feature is particularly valuable in applications where shaft alignment may change due to thermal expansion, vibration, or other dynamic factors.

Overall, the misalignment accommodation capability of magnetic couplings contributes to their reliability, reduces the risk of premature wear, and makes them well-suited for various industrial applications, including pumps, mixers, and other rotating equipment.

magnetic coupling

Can Magnetic Couplings Be Retrofitted into Existing Systems to Enhance Performance?

Yes, magnetic couplings can be retrofitted into existing systems to enhance performance, efficiency, and reliability. Retrofitting magnetic couplings offers several benefits and is a practical solution for upgrading older systems or replacing traditional mechanical couplings with more advanced technology. Here’s how magnetic couplings can enhance the performance of existing systems:

  1. Improved Efficiency:

    Magnetic couplings operate without direct physical contact, which reduces friction losses and improves overall system efficiency. By retrofitting a magnetic coupling, the system can experience lower energy consumption and increased power transmission efficiency.

  2. Elimination of Mechanical Wear:

    Traditional mechanical couplings with sliding or rolling elements are prone to wear and require regular maintenance and replacement. Magnetic couplings, on the other hand, do not have any physical contact between components, eliminating the need for lubrication and reducing mechanical wear. Retrofitting with a magnetic coupling can extend the system’s lifespan and reduce maintenance costs.

  3. Hermetic Sealing:

    Magnetic couplings offer hermetic sealing capabilities, preventing fluid leakage and contamination. By retrofitting a magnetic coupling, the system can achieve a leak-free operation, making it suitable for applications in industries such as chemical processing, pharmaceuticals, and food and beverage.

  4. Compatibility:

    Magnetic couplings can be designed to be compatible with various systems and applications. Manufacturers offer a range of sizes and configurations to suit different retrofitting needs. Customized magnetic couplings can be engineered to match the existing system’s requirements without major modifications.

  5. Tolerance to Misalignment:

    Magnetic couplings can accommodate a certain degree of misalignment between the driving and driven components. This misalignment tolerance can be advantageous when retrofitting into systems where precise alignment may be challenging to achieve.

  6. Overload Protection:

    Some magnetic couplings come with built-in overload protection features. Retrofitting with such couplings can add an additional layer of safety to the system, preventing damage in case of sudden overloads or excessive torque.

When retrofitting magnetic couplings into existing systems, it is essential to work with experienced engineers or manufacturers to ensure proper sizing, alignment, and integration. Conducting a thorough evaluation of the system’s requirements and the benefits of the retrofit will help determine the best magnetic coupling solution for enhancing the performance and longevity of the existing setup.

magnetic coupling

Key Design Considerations When Using Magnetic Couplings in Pumps and Agitators

When incorporating magnetic couplings in pumps and agitators, several critical design considerations need to be taken into account to ensure effective and reliable operation. These considerations include:

  1. Fluid Characteristics:

    Understand the properties of the fluid being handled, including viscosity, temperature, and corrosiveness. High-viscosity fluids may require larger magnets to generate sufficient torque, while corrosive fluids may necessitate materials with excellent chemical resistance.

  2. Torque Requirements:

    Determine the required torque for the specific pump or agitator application. Magnetic couplings must be designed to transmit the necessary torque to handle the fluid flow or agitation load effectively.

  3. Alignment and Space Constraints:

    Consider the available space and potential misalignment between the driving and driven shafts. Magnetic couplings can accommodate some misalignment, but proper alignment is essential to ensure efficient power transmission and avoid unnecessary stresses on the system.

  4. Speed and Efficiency:

    Evaluate the speed requirements of the pump or agitator. Magnetic couplings are capable of high-speed operation, but it’s crucial to optimize the design to minimize eddy current losses and ensure maximum efficiency.

  5. Containment and Hermetic Sealing:

    Ensure that the magnetic coupling provides adequate containment and hermetic sealing to prevent fluid leakage or contamination. This is especially critical when handling hazardous or sensitive fluids.

  6. Materials and Coatings:

    Select appropriate materials for the magnetic coupling components based on the fluid characteristics. Stainless steel, ceramics, or specialized coatings can enhance the coupling’s durability and resistance to corrosion.

  7. Overload Protection:

    Consider incorporating overload protection features in the magnetic coupling design. This can include slip mechanisms or torque limiters to prevent damage to the driving motor and connected equipment in case of sudden overloads or blockages.

  8. Environmental Conditions:

    Take into account the environmental conditions in which the pump or agitator will operate. Extreme temperatures, humidity, or exposure to aggressive chemicals can influence the choice of materials and coatings for the magnetic coupling.

  9. Integration with System Components:

    Ensure that the magnetic coupling design integrates seamlessly with other system components. Proper coupling sizing, mounting, and alignment procedures are essential for trouble-free installation and operation.

  10. Manufacturer Expertise:

    Collaborate with manufacturers experienced in designing magnetic couplings for pumps and agitators. Work with experts who can provide customized solutions tailored to your specific application needs.

By carefully considering these design factors, you can maximize the benefits of using magnetic couplings in pumps and agitators, such as improved reliability, reduced maintenance, and enhanced system performance.

China manufacturer Standard Male Magnetic Coupling Plastic Pipe Fitting with Good Service  China manufacturer Standard Male Magnetic Coupling Plastic Pipe Fitting with Good Service
editor by CX 2024-02-01