Product Description

Hot sale: low noise ,no leakage, no additional cost for shaft coupling design magnetic coupling design coupling manufacturer

Please send us following information.
1. Motor output power(KW)
2. Motor speed(RPM)
3. Torque of the mangetic coupling
4. Working pressure of the housing(isolation sleeve)
5. Working temperature of magnetic coupling
6. Technical drawing of the output part connector (usually motor)
7. Technical drawing of the input part connector (usually pump)

Introduction of shaft coupling design magnetic coupling design coupling manufacturer
Magnetic shaft coupling is a new kind of coupling, which connects motor and machine by permanent magnetic force. 
They are consisted of external rotor, internal rotor and isolating covers.
They work in the sealed magnetic drive pumps, which transporting volatile, flammable, explosive and toxic solutions with no leakage. 
These magnetic shaft couplings can be used to connect gear pumps , screw pumps, centrifugal pumps, etc. with all types of electric motor or gear box. 
Magnetic shaft coupling are widely used in various industries and fields, such as chemical, papermaking, foodstuff, pharmacy, and so on.

Advantages of shaft coupling design magnetic coupling design coupling manufacturer
» Elimination of fluid leakage from the pump shaft.
» Vibrations are not transmitted to the pump.
» No maintenance required for magnetic couplings.
» Using magnetic couplings allows use of standard pumps without expensive mechanical seals.
» No additional cost for purchasing mechanical seal spare parts and maintenance.

Specification of shaft coupling design magnetic coupling design coupling manufacturer

Item Internal Rotor(mm) External Rotor(mm) Isolating Covering(mm)
A B C D E F G Shaft Pin H I J L N M P Q R S T U
GME03-3LM00 Φ35 Φ10 26 18 M6X12 Φ42 Φ60 Φ50 46 6-M4 Φ40 Φ50 4-Φ5.4 Φ38 Φ60 6 6
GME03-5MM00 Φ42 Φ12 27 4 18 13.8 M6X16 Φ49 Φ72 Φ60 46 4-Φ6.7 Φ52 Φ60 4-Φ6.7 Φ44 Φ74 8 8
GME03-16LM00 Φ56 Φ12 45 4 25 13.8 M6X16 Φ63 Φ89 Φ80 75 6-M5 Φ70 Φ75 4-Φ6.7 Φ58 Φ89 8 8
GME03-16LM01 Φ56 Φ12 45 4 25 13.8 M6X16 Φ63 Φ89 Φ80 75 4-M5 Φ70 Φ75 4-Φ6.7 Φ58 Φ89 6 10
GME03-16MM00 Φ56 Φ12 45 4 25 13.8 M6X16 Φ63 Φ89 Φ80 75 6-M5 Φ70 Φ75 4-Φ6.7 Φ58 Φ89 8 8
GME03-22LM00 Φ88 Φ20 29 6 25 22.8 M8X20 Φ97 Φ122 Φ110 70 8-M6 Φ98 Φ108 6-Φ6.7 Φ91 Φ122 8 8
GME03-30LM00 Φ88 Φ20 48 6 30 22.8 M8X20 Φ97 Φ122 Φ110 81 8-M6 Φ98 Φ108 6-Φ6.7 Φ91 Φ122 8 8
GME03-40LM00 Φ101 Φ25 49 8 28 28.3 M10X20 Φ109 Φ140 Φ124 83 8-M8 Φ110 Φ126 8-Φ6.7 Φ103 Φ140 12 6
GME03-50LM00 Φ107 Φ20 70 6 30 22.8 M6X16 Φ113.4 Φ145 Φ135 80 4-M6 Φ126 Φ133 12-Φ8.7 Φ109 Φ153 12 15
GME03-65LM00 Φ101 Φ25 77 8 45 28.3 M10X20 Φ109 Φ140 Φ124 111 8-M8 Φ110 Φ126 8-Φ6.7 Φ103 Φ140 12 6
GME03-80LM00 Φ106 Φ32 65 10 21 36.5 M6X25 Φ115 Φ145 Φ135 82 4-M6 Φ127 Φ135 6-Φ8.7 Φ110 Φ153 13 18
GME03-80LM00 Φ141 Φ92 Φ40 65 12 45 43.3 M12X25 Φ152 Φ180 Φ168 100 8-M8 Φ154 Φ164 8-Φ6.7 Φ145 Φ180 12 8
GME03-100LM00 Φ131 Φ82 Φ32 80 10 24.5 35.3 M8X35 Φ139 Φ170 Φ160 100 4-M6 Φ152 Φ158 8-Φ8.7 Φ133 Φ178 14 21
GME03-110LH00 Φ141 Φ92 Φ40 85 10 50 43.3 M12X25 Φ152 Φ184 Φ168 115 12-M8 Φ156 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-110LM00 Φ141 Φ92 Φ35 80 10 55 38.3 M12X25 Φ152 Φ180 Φ168 115 12-M8 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-140LM00 Φ141 Φ92 Φ40 110 12 80 43.3 M12X25 Φ152 Φ190 Φ170 145 12-M10 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-180LM00 Φ141 Φ92 Φ40 140 12 95 43.3 M12X25 Φ152 Φ190 Φ170 175 12-M10 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-220LM00 Φ141 Φ92 Φ48 160 14 110 51.8 M12X25 Φ152 Φ190 Φ170 195 12-M10 Φ154 Φ164 12-Φ6.7 Φ145 Φ180 12 3
GME03-300LM00 Φ162 Φ65 100 18 60 69.4   Φ170 Φ198 Φ188 123 12-M6 Φ180 Φ192 12-Φ11 Φ163.5 Φ218 16 10
GME03-400LH00 Φ195 Φ70 127 20 107 79.9 M12X25 Φ203 Φ234 Φ222 152 6-M6 Φ212 Φ164 12-Φ11 Φ198 Φ278 16 22

Application of shaft coupling design magnetic coupling design coupling manufacturer
The ability to hermetically separate 2 areas whilst continuing to transmit mechanical power from one to the other makes these couplings ideal for applications where prevention of cross contamination is essential. For instance: hydraulic sectors, dosing systems, compressors, sterilizers, industrial ovens, biotechnology, subsea equipment, pharmaceutical industry, chemical industry, food industry, generators and mixers.
Operation principles of shaft coupling design magnetic coupling design coupling manufacturer
The magnetic coupling works by using the power generated by permanent magnets. No external power supply is needed. These are permanent magnets not electro magnets.
Packing Method of shaft coupling design magnetic coupling design coupling manufacturer
Double strength corrugated Carton and Wood case Sea Packing.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

magnetic coupling

Maintenance Requirements for Magnetic Couplings to Ensure Long-Term Performance

Magnetic couplings are designed to be low-maintenance compared to traditional mechanical couplings. However, some maintenance practices can help ensure their long-term performance and reliability. Here are the key maintenance requirements for magnetic couplings:

  1. Regular Inspection:

    Perform regular visual inspections of the magnetic coupling to check for signs of wear, damage, or misalignment. Look for any unusual noises or vibrations during operation, which may indicate a potential issue that requires attention.

  2. Cleanliness:

    Keep the magnetic coupling and surrounding area clean and free from dirt, debris, or contaminants. Foreign particles on the coupling’s surface can affect its magnetic performance and lead to energy losses.

  3. Lubrication:

    Magnetic couplings do not require traditional lubrication since they operate without physical contact. However, some couplings may have bearings or other components that require lubrication. Refer to the manufacturer’s guidelines for specific lubrication requirements.

  4. Environmental Considerations:

    Ensure that the operating environment of the magnetic coupling is within the specified limits provided by the manufacturer. Extreme temperatures, aggressive chemicals, or other harsh conditions can affect the performance and longevity of the coupling.

  5. Alignment Check:

    Periodically check the alignment of the driving and driven shafts. Although magnetic couplings can tolerate some misalignment, ensuring proper alignment will optimize efficiency and reduce stress on the coupling components.

  6. Torque and Speed Limits:

    Adhere to the specified torque and speed limits for the magnetic coupling based on the application requirements. Operating the coupling beyond its rated capacity can lead to premature failure.

  7. Overload Protection:

    If the application involves occasional overloads, consider incorporating overload protection features, such as torque limiters or slip mechanisms, to prevent damage to the coupling and connected equipment.

  8. Regular Maintenance Schedule:

    Establish a regular maintenance schedule based on the manufacturer’s recommendations. Periodic inspections, cleaning, and other maintenance tasks can help identify and address potential issues before they escalate.

  9. Expert Support:

    When in doubt or if encountering any significant issues, seek assistance from the magnetic coupling manufacturer or a qualified engineer. They can provide guidance on maintenance best practices and address any specific concerns related to the coupling’s performance.

By following these maintenance requirements, you can ensure the long-term performance, reliability, and efficiency of the magnetic coupling in your application.

magnetic coupling

Where Can I Find Reputable Suppliers or Manufacturers of Magnetic Couplings for Specific Engineering Needs?

When searching for reputable suppliers or manufacturers of magnetic couplings, it is essential to consider several factors to meet your specific engineering needs. Here are some valuable resources and steps to help you find reliable suppliers:

  1. Online Directories:

    Online directories, such as ThomasNet, Alibaba, and GlobalSpec, are valuable platforms to search for manufacturers and suppliers of magnetic couplings. These directories provide detailed information about companies, their products, and their capabilities, making it easier to identify potential suppliers.

  2. Trade Shows and Conferences:

    Attending trade shows and engineering conferences related to your industry can be an excellent way to meet and connect with magnetic coupling manufacturers in person. These events provide an opportunity to see product demonstrations, discuss your specific needs, and establish direct contacts with suppliers.

  3. Industry Associations:

    Industry associations and organizations often have a network of members, including suppliers and manufacturers of various engineering components. They may provide valuable recommendations and insights on reputable suppliers of magnetic couplings within your industry.

  4. Referrals and Recommendations:

    Seeking referrals from colleagues or industry professionals who have experience with magnetic couplings can be valuable. Recommendations from trusted sources can save time and help you find reliable suppliers.

  5. Online Research:

    Performing online research and reading customer reviews and testimonials can give you insights into the reputation and reliability of different magnetic coupling suppliers. Look for manufacturers with positive feedback and a track record of delivering quality products.

  6. Supplier Websites:

    Visit the websites of potential magnetic coupling suppliers to learn more about their products, services, and manufacturing capabilities. Look for suppliers with a comprehensive product range, engineering expertise, and a commitment to meeting specific customer requirements.

  7. Customization Options:

    Consider suppliers who offer customization options to meet your specific engineering needs. Magnetic couplings may need to be tailored for particular torque, speed, or environmental requirements, so selecting a manufacturer with the ability to create bespoke solutions is essential.

It is crucial to establish clear communication with potential suppliers, sharing your engineering specifications and expectations. Requesting samples or prototypes, if possible, can also help evaluate the suitability of the magnetic couplings for your specific applications. Ultimately, choosing a reputable and experienced supplier will ensure that you receive high-quality magnetic couplings that meet your engineering needs and contribute to the success of your projects.

magnetic coupling

Different Types of Magnetic Couplings Used in Various Applications

Magnetic couplings come in different configurations to suit various applications and specific requirements. Some of the common types of magnetic couplings include:

  • Standard Magnetic Couplings:

    These are the most basic and widely used magnetic couplings. They consist of two rotors with permanent magnets and a containment shell. Standard magnetic couplings are suitable for a wide range of applications, providing non-contact power transmission, misalignment compensation, and isolation between shafts.

  • High Torque Magnetic Couplings:

    High torque magnetic couplings are designed to transmit higher levels of torque between the input and output shafts. They feature stronger and larger magnets to handle increased power transmission requirements. These couplings are commonly used in heavy-duty industrial applications, such as mixers, agitators, and large pumps.

  • Low Torque Magnetic Couplings:

    Conversely, low torque magnetic couplings are suitable for applications with lower torque demands. They have smaller and less powerful magnets, making them ideal for applications where precision and efficiency are essential, such as medical devices and laboratory equipment.

  • Variable Torque Magnetic Couplings:

    Variable torque magnetic couplings provide the ability to adjust the torque transmission level. These couplings can be designed with adjustable magnets or magnetic fields, allowing users to control the torque according to the specific needs of the application. They are used in systems where variable speed and torque are required, such as variable speed pumps and compressors.

  • High-Speed Magnetic Couplings:

    High-speed magnetic couplings are designed to handle rapid rotations without compromising on efficiency and reliability. They feature special designs and materials to reduce eddy currents and losses associated with high-speed operation. These couplings are commonly used in centrifugal pumps, turbo machinery, and high-speed motors.

  • Compact Magnetic Couplings:

    Compact magnetic couplings are designed to have a smaller footprint, making them suitable for applications with limited space. They are commonly used in compact pumps, microfluidic systems, and portable devices where space efficiency is crucial.

  • Bi-Directional Magnetic Couplings:

    Bi-directional magnetic couplings allow power transmission in both directions between the input and output shafts. They are used in applications where bidirectional rotation or periodic reversing of motion is required, such as in mixing applications and reversible pumps.

  • Custom Magnetic Couplings:

    Manufacturers can also create custom magnetic couplings tailored to specific applications. Custom couplings are designed to meet unique requirements, such as special torque levels, specific environmental conditions, or integration with proprietary systems.

The choice of the magnetic coupling type depends on factors such as torque requirements, speed, space constraints, environmental conditions, and the level of customization needed for the specific application.

China OEM Shaft Coupling Design Magnetic Coupling Design Coupling Manufacturer  China OEM Shaft Coupling Design Magnetic Coupling Design Coupling Manufacturer
editor by CX 2024-02-09